Abstract
An optical probe configured for insertion into the anterior chamber of an eye, adjacent to the cataractous lens of the eye, comprises an optical source, and an optical waveguide connected to deliver optical radiation from the source to the probe. The optical radiation is in the form of pulses which have a repetition rate, a wavelength and an optical energy selected to cause significant ablation-induced damage to the lens within an ablation zone, and significant acoustic-induced damage to the lens within an acoustic zone, such that the acoustic zone is significantly larger in size than the ablation zone. The acoustic zone is created by generating shock waves which radiate from the ablation zone and propagate through hard nuclear material of the cataractous lens, such that the nuclear material is microfractured. The microfractured lens material is significantly more reactive to the laser pulses than prior to microfracturing,...
Filing date: May 31, 1995
Issue date: Apr 14, 1998
Inventors: Michael Colvard, Varouj D. Amirkhanian, HeeJung Koh Wescoat, Judy E. Mazza, Colette Cozean
Assignee: Premier Laser Systems, Inc.
Download
What is claimed is:
1. A method of removing a lens of an eye, comprising:
- (a) inserting a probe into the anterior chamber of said eye;
- (b) directing pulses of laser radiation from said probe against a location on nuclear material of said lens;
- (c) selecting the wavelength, repetition rate and pulse energy of said laser radiation such that during step (b), said pulses simultaneously (1) ablate said lens within an ablation zone, and (2) generate shock waves which radiate from said location and propagate through said nuclear material so as to cause substantial acoustic damage thereto, said damage being in an acoustic zone that extends outside said ablation zone into at least a substantial portion of said nuclear material;
- (d) moving said probe such that said pulses of laser radiation are directed onto acoustically damaged nuclear material, whereby said simultaneous ablation and shock wave generation readily transform said nuclear material into an emulsion capable of aspiration; and
- (e) aspirating said emulsion from said eye.
2. The method of claim 1, wherein step (b) comprises the step of focusing said lens radiation at a focal spot within said nuclear material of said lens, and wherein step (b) comprises the step of moving said focal spot along a path within said nuclear material sufficiently slowly to cause ablation at multiple locations along said path.
3. The method of claim 2, wherein said focal spot is no more than a few hundred microns in diameter, and wherein step (b) comprises moving said focal spot across substantially the entire lens.
4. The method of claim 1, wherein said wavelength is in a mid-infrared wavelength region and on the order of 3 microns, and wherein said pulse energy is 10-80 mJ per pulse.
5. The method of claim 1, wherein step (b) comprises ablating a crater in said lens.
6. The method of claim 5, wherein said crater is in said nuclear material.